Part Number Hot Search : 
1H221 0150C LYM67K CXD2540Q 10700 P50N06 T373A FN3550
Product Description
Full Text Search
 

To Download IRF6718L2TRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 07/27/11 IRF6718L2TRPBF irf6718l2tr1pbf directfet   power mosfet  applicable directfet outline and substrate outline  
 
  
 
   fig 1. typical on-resistance vs. gate voltage fig 2. typical total gate charge vs gate-to-source voltage  click on this section to link to the appropriate technical paper.  click on this section to link to the directfet website.   surface mounted on 1 in. square cu board, steady state.  t c measured with thermocouple mounted to top (drain) of part.   repetitive rating; pulse width limited by max. junction temperature.  starting t j = 25c, l = 0.44mh, r g = 25 , i as = 49a.  directfet  isometric  s1 s2 sb m2 m4 l4 l6 l8  rohs compliant containing no lead and bromide   dual sided cooling compatible   ultra low package inductance  very low r ds(on) for reduced conduction losses  optimized for active o-ring / efuse applications  compatible with existing surface mount techniques  description the IRF6718L2TRPBF combines the latest hexfet? power mosfet silicon technology with the advanced directfet ? packaging to achieve the lowest on-state resistance in a package that has the footprint of a d-pak. the directfet package is compatible with existi ng layout geometries used in power applications, pcb assembly equipment and vapor phase, infra-red or convection soldering techniques, wh en application note an-1035 is followed regarding the manufacturing methods and processes. the directfet package allows dual sided cooling to maximize thermal transfer in power systems. the IRF6718L2TRPBF has extremely low si rdson coupled with ultra low package resistance to minimize conduction losses. the IRF6718L2TRPBF has been optimized for parameters that are critical in reliable operation on active o-ring / efuse / hot swap ap plications. 2 4 6 8 10 v gs, gate -to -source voltage (v) 0 1 2 3 4 t y p i c a l r d s ( o n ) ( m ) i d = 61a t j = 25c t j = 125c 0 20 40 60 80 100 120 140 160 180 q g total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 20v v ds = 13v i d = 49a v dss v gs r ds(on) r ds(on) 25v max 20v max 0.50m @10v 1.0m @4.5v q g tot q gd q gs2 q rr q oss v gs(th) 64nc 20nc 9.4nc 67nc 50nc 1.9v absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t a = 25c continuous drain current, v gs @ 10v i d @ t a = 70c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v  i dm pulsed drain current  e as single pulse avalanche energy  mj i ar avalanche current  a 530 max. 52 270 490 20 25 61 49 


   2 www.irf.com    repetitive rating; pulse width limited by max. junction temperature.  pulse width 400 s; duty cycle 2%. static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 25 ??? ??? v ? v dss / t j breakdown voltage temp. coefficient ??? 11 ??? mv/c r ds(on) static drain-to-source on-resistance ??? 0.50 0.70 m ??? 1.0 1.4 v gs(th) gate threshold voltage 1.35 1.90 2.35 v v gs(th) / t j gate threshold voltage coefficient ??? -7.6 ??? mv/c i dss drain-to-source leakage current ??? ??? 1.0 a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 gfs forward transconductance 820 ??? ??? s q g total gate charge ??? 64 96 q gs1 pre-vth gate-to-source charge ??? 18 ??? q gs2 post-vth gate-to-source charge ??? 9.4 ??? nc q gd gate-to-drain charge ??? 20 ??? q godr gate charge overdrive ??? 16.6 ??? see fig. 18 q sw switch charge (q gs2 + q gd ) ??? 29.4 ??? q oss output charge ??? 50 ??? nc r g gate resistance ??? 0.90 ??? t d(on) turn-on delay time ??? 67 ??? t r rise time ??? 140 ??? ns t d(off) turn-off delay time ??? 47 ??? t f fall time ??? 53 ??? c iss input capacitance ??? 8910 ??? c oss output capacitance ??? 2310 ??? pf c rss reverse transfer capacitance ??? 1115 ??? diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 61 (body diode) a i sm pulsed source current ??? ??? 490 (body diode)  v sd diode forward voltage ??? ??? 1.0 v t rr reverse recovery time ??? 39 59 ns q rr reverse recovery charge ??? 67 100 nc di/dt = 200a/ s  t j = 25c, i s = 49a, v gs = 0v  showing the integral reverse p-n junction diode. v gs = 4.5v, i d = 49a  v ds = v gs , i d = 150 a t j = 25c, i f = 49a v gs = 4.5v i d = 49a v gs = 0v v ds = 13v i d = 49a v dd = 13v, v gs = 4.5v  conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1ma v gs = 10v, i d = 61a  v gs = 20v v gs = -20v v ds = 20v, v gs = 0v v ds = 13v v ds = 20v, v gs = 0v, t j = 125c mosfet symbol r g = 6.8 v ds = 13v, i d = 49a conditions ? = 1.0mhz v ds = 16v, v gs = 0v

   www.irf.com 3 fig 3. maximum effective transient thermal impedance, junction-to-ambient  (at lower pulse widths zth ja & zth jc are combined)   surface mounted on 1 in. square cu board, steady state.  t c measured with thermocouple incontact with top (drain) of part. used double sided cooling, mounting pad with large heatsink. 
mounted on minimum footprint full size board with metalized back and with small clip heatsink. r is measured at   
   surface mounted on 1 in. square cu board (still air).   mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 1000 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc ri (c/w) i (sec) 12.2942 18.10679 14.4246 2.626824 2.07265 0.007811 6.20859 0.239314 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci= i / ri ci= i / ri a a 4 4 r 4 r 4 absolute maximum ratings parameter units p d @t a = 25c power dissipation w p d @t a = 70c power dissipation p d @t c = 25c power dissipation  t p peak soldering temperature c t j operating junction and t stg storage temperature range thermal resistance parameter typ. max. units r ??? 35 r  12.5 ??? r  20 ??? c/w r  ??? 1.8 r 1.0  w/c 0.029 270 -55 to + 175 max. 83 4.3 3.0

   4 www.irf.com fig 5. typical output characteristics fig 4. typical output characteristics fig 6. typical transfer characteristics fig 7. normalized on-resistance vs. temperature fig 8. typical capacitance vs.drain-to-source voltage fig 9. typical on-resistance vs. drain current and gate voltage 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 5.0v 4.5v 4.0v 3.5v 3.0v 2.8v bottom 2.5v 60 s pulse width tj = 25c 2.5v 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 60 s pulse width tj = 175c vgs top 10v 5.0v 4.5v 4.0v 3.5v 3.0v 2.8v bottom 2.5v 1 2 3 4 5 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 175c t j = 25c t j = -40c v ds = 15v 60 s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 t y p i c a l r d s ( o n ) ( n o r m a l i z e d ) i d = 61a v gs = 10v v gs = 4.5v 0 50 100 150 200 i d , drain current (a) 0.50 0.60 0.70 0.80 0.90 t y p i c a l r d s ( o n ) ( m ) t j = 25c top vgs = 6.0v vgs = 8.0v vgs = 10v vgs = 12v vgs = 14v vgs = 16v bottom vgs = 18v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss

   www.irf.com 5 fig 13. typical threshold voltage vs. junction temperature fig 12. maximum drain current vs. case temperature fig 10. typical source-drain diode forward voltage fig 11. maximum safe operating area fig 15. maximum avalanche energy vs. drain current fig 14. typ. forward transconductance vs. drain current -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t y p i c a l v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 150 a i d = 250 a i d = 1.0ma i d = 1.0a 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 v sd , source-to-drain voltage (v) 0 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 175c t j = 25c t j = -40c v gs = 0v 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 400 800 1200 1600 2000 2400 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 2.9a 4.6a bottom 49a 0 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) t c = 25c t j = 175c single pulse 1msec 10msec dc 100 sec 25 50 75 100 125 150 175 t c , case temperature (c) 0 50 100 150 200 250 300 i d , d r a i n c u r r e n t ( a ) 0 20406080100 i d ,drain-to-source current (a) 0 100 200 300 400 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 380 s pulse width

   6 www.irf.com fig 16. typical avalanche current vs.pulsewidth fig 17. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 16, 17: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 19a, 19b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 16, 17). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =
 t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 tav (sec) 0.01 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming dtj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a r , a v a l a n c h e e n e r g y ( m j ) single pulse i d = 49a

   www.irf.com 7 fig 18a. gate charge test circuit fig 18b. gate charge waveform fig 19b. unclamped inductive waveforms fig 19a. unclamped inductive test circuit fig 20b. switching time waveforms fig 20a. switching time test circuit 1k vcc dut 0 l s 20k vds vgs id vgs(th) qgs1 qgs2 qgd qgodr r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v t p v (br)dss i as  
 1      0.1 %
 
   + -   v ds v gs 90% 10% t d(off) t d(on) t f t r

   8 www.irf.com fig 19.      for n-channel hexfet   power mosfets p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period                  ?       ?   ?         ? !   " #  ?  $   %  &'&& ?     "     (( ? &'&& ) $  '   + - + + + - - -   
    
         please see an-1035 for directfet assembly details and stencil and substrate design recommendations g = gate d = drain s = source d d d d d d sss s s s g

   www.irf.com 9 
          please see an-1035 for directfet assembly details and stencil and substrate design recommendations directfet  part marking logo date code line above the last character of the date code indicates "lead-free" batch number part number gate marking max 0.360 0.280 0.236 0.026 0.024 0.048 0.017 0.030 0.017 0.058 0.106 0.0274 0.0031 0.007 imperial metric dimensions min 0.356 0.270 0.232 0.022 0.023 0.046 0.015 0.029 0.015 0.053 0.099 0.0235 0.0008 0.003 code a b c d e f g h j k l m n p min 9.05 6.85 5.90 0.55 0.58 1.18 0.98 0.73 0.38 1.34 2.52 0.616 0.020 0.09 max 9.15 7.10 6.00 0.65 0.62 1.22 1.02 0.77 0.42 1.47 2.69 0.676 0.080 0.18

   10 www.irf.com ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 07/2011 directfet  tape & reel dimension (showing component orientation). note: for the most current drawing please refer to ir website at http://www .irf.com/package 



          

 
                   
       

 
           data and specifications subject to change without notice. this product has been designed and qualified to msl1 rating for the consumer market. 
  
 


 
 




 



 !
"
# qualification standards can be found on ir?s web site. reel dimensions note: controlling dimensions in mm std reel quantity is 4000 parts. (ordered as irf6718l2pbf). standard option (qty 4000) min 330.0 20.2 12.8 1.5 100.0 n.c 16.4 15.9 code a b c d e f g h max n.c n.c 13.2 n.c n.c 22.4 18.4 18.4 min 12.992 0.795 0.504 0.059 3.937 n.c 0.646 0.626 max n.c n.c 0.520 n.c n.c 0.889 0.724 0.724 metric imperial


▲Up To Search▲   

 
Price & Availability of IRF6718L2TRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X